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APPLIED TECHNOLOGY LABORr Y POSITION STATEMENT

The Advancing Blade Concept (ABC) rotor system was conceived as a means to alleviate classical retreating blade
stall limitations and permit rotary wing flight throughout an expanded flight envelope. Unlike earlier r-neralion corn-
pound helicopters. which used wings to unload the rotor at high speeds, an ABC helicopter retains rotor lift under
high speed/high altitude conditions and therefore does not need a wing.

This report addresses the research, development, and test efforts involved in demonstrating the feasibility of the ABC
rotor system. It covers contractual work spanning 8-1/2 years during which time the ABC rotor evolved through
design, small scale wind tunonel tests, miscellaneous laboratory and ground tests, incorporation into the XH-59A cemon-
strator aircraft, and finally, test of that aircraft. The primary emphasis is on flight test results - as a puie helicopter
up to level flight speeds of 156 knots true airspeed (WIAS) and with auxiliary propulsion up to level flight speeds of
238 KTAS.

Test results have been favorable and have verified the feasibility of this type of rotor system. Many of the original
concerns relative to handling qualities and rotor stability have been laid to rest- Some insight has been gained into
the magnitude of the design compromises needed to accommodate both conventional and high speed flight in one
rotary wing aircraft.

A production ABC helicopter would require the application of composite materials technology and rotor redesign to
reduce the rotor weight fraction. For missions requiring speeds above approximately 160 knots, an integrated Z
lift/thrust propulsion system would be used to selectively power the rotors for lift or power the fans (or propeller)
for thrust. Some type of vibration attenuation device would also be needed-

Results of this program will form a data base from which subsequent ABC designs can evolve. Technical areas
requiring further R&D effort to exploit the potential of the ABC rotor have been identified.

Flight testing of the XH-59A under Navy contract DAAK51-80-C-0021 is continuing. The speed envelope has been
expanded to 263 KTAS and the aircraft has been flow- to a density altitude of approximately 25,000 feet.

Mr. Harvey R. Young and Mr. John A. Macrino from the Aeronautical Systems Division were the project engineers
for this program, and Mr. Duane R. Simon was the project test pilot.

DISCLAIMERS

The findings in this report are not to be construed at an official Department of the Army position unless so
designated by other authorized documents.

When Government drawings, speWificatiuns, or other data are used for any purpose other then in connection
with a definitely related Government procurement operation, the United States Government thereby incurs no
responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished,
or in any way supplied the said drawings, specifications, or other data is not to be regarded by imrplication or
otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or
permission, to manufacture, use, or sell any patented invention that may in any way be related thereto.

Trade names cited in this report do not constitute an official endorsement or approval of the use of such
commercial hardware or software.

DISPOSITION INSTRUCTIONS

Destroy this report, when no longer needed. Do not return it to the originator.



SECURITY CL-ASSirICoritON OF To S PAGE 'ml,, Paer. rnt.,.d)

READOINSTUATION

JýOA~RTrDOCUANE14AN IO PDDRES BEFPOGRAM ELEMENTPOJET TASK

Siork Aircraf Division of UniedTeAChnSOlie AO 3REAIiN' 6 WORAUNI NUMBERS

II. CONTROLIN OPPd~bICE) NAME ANODFS REPORT OATS ODCOE E

andTecnoogyLalraoris (VRDCC I._ NUOMBER OC RAESOR NUMBE

IA. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ : MNTRN AGNYNM &AORS(Idfwlfc.oooIijOfc) I.ECUNRICTY CLGASS. (of MBEpR(.)

IAME ANDRRUIO STATEMEN (of PROleA ELEeN.oOECAS

Approved tAircrf publ ic r. as e:n ditib to uniited.Tcn lg e RA6 OKUI UBR

Adv'ancing Blade 0oncep (A0C Heicptr otr

A;li~-ped Rotary Wing% LAiracraft.. ým Helicpte Desgn

V/nTd Technology Helicopte(AVADC ~Ar Flih Test
1igees RotorsF PGE

24. MONTORN ACT NC NC't ME - Aen a SS~ If n f-a7 dn a f y hI wtrlinor Offic) 1.SCRT LS.(IW t

The H-59 Advncig Bl~e Cncep AB demnstrtorasiraftiae cmled

proulio configurations ThisMEN tesin was supotdpywidrunetess

analyti cal developmrentas, adisflighbiution snimtudie.

IOll. 1473EENAR NOESIINO NVSI SEEUcasfe

AECmT HeiotrC LAxia l IATO ORTISPGotor Gl ntr

Adacn ldAocp AC eiotrRtr



Unclas si fied
SE,:URITY CL ASSIFIC ATION OF THIS *AGE1fl.n Dot.E,.c

Tlesting., as; a purIe he' !IcoptIer wa aS cco np!i Žshed i two Yphasca . Tovr :OctO
system, adeguaocy. a __-w speed test- program -was flown (otýt. knots) fz-rom .ut-.'toý
Septermber CS The balance ftlie ' -ght enelpn pic~zqress ---C

stpsfomi Nuverriber 19-5 to aN-Lit-'. A powa-er-.---ed rnax'. le-el fign-
speed of 156 KTAS was reached in tr is phase, 18( nT- wai ci--'eea -p a -ow
dive, WAn an extensive manieuve u- r-pe wan dee4 i opd 1ea-Id
May 1980 the aircraft Was flowrn--it two j-60 e-ng.ines ir-aed tsjnvd

.uiit propulsion. A in-,iu aspeed of 2-3F. (ITAS i-n tle
reac:hed anid a sizable maneuver. en 'einpe wa= d-eveloped tntq Qoagu tta
of 106 flight bouts were aeon-i ited tn t"e pure heiC. ptu -1-.a au Sii !'-
pularon modes.

TestL ressults to date haove yened tie capaorlrt-y of tr'e Adtsic~n bl made 
0
-'-n-erl

to meet its predicted tecrrnicmi goa3.N Mor 'urpi''-s o iunaniCapaten
problems have been encountered.. Speci fically

Q Hover performance of the co-rr-, r1,t0 1S eX!Q~erv with
rýoto figure of meirt -Is high as

Perfolrmace tyst- eýu-- -1itmv .ot - ll=
yerified the performance predictions.

* Rotor control power and damping are very hrgh relative to)
other rotors; the entrre fl igh en eiope hat- been :lo-wn w~oh
the Stability; Augmentattocn Sy;stem: (S:(it!

* The coaxial tutors and abseuze of a rail rotor nii
cantros coupling; -~e- neatly pore ýitcn, ri-ýil.yw.a:
vet tical respon1-ses t ,o s1"l cont roI input S 1ý"i
direts i~ons.

Rotor system streoWse an" moments arE Jomumnat b
one-per -revolution blade loads on th-e advanc-ing blade, sýn
fol low predicted trends.

o Similarl'y. t.3e trp cleararue in level1 fl, glt f,-c~
pred; oted ti ends with prxiareI . 1 inches cf olsmaranco
remaining at ax

o W-,thout auxilars jets running the ari af~t is an ucasul I
quiet neli copter because of A s ar s of tail ttor and
relatlzves-: low rotot- t-p specd

Aircraft operatind limits have been oily par sally defined. wpeatio-n i
Dure helicopter mode to an altitrude of 1410 feet awoed the iotr non: nn-
sional blade loading. a to v.1-1 t mt.i stall. At lower altitudes
(auxil~arr. Propuisron cohrigur at ron) ii-ne" Wrte roto t""" t reached 27.1-O
Ilb, the design limit for the airframe, at speeds uip tc 2-- KTin. Ruto1r'Hale
tip clewarane is reduced in bo! h high speed r-ul1-ups and rol ng -ano'er s. but
for the coonditions flown )zerc- t(e Z&0 Wf anid left and "Wiot 1~ rates to W-
deg sec). c-learance war, not limiting.

The aircraft'si flying qualrLtres -iie 7ezy good. Frice Sik k-r< pilrots and foot
gox-ernsenIC pilots have flown rho sticrift to date. Stat ntq augmenttatron 6
system gains seected to assist the p: lt are low. N -ririal flight trd.-uugrju- the
envelope requrries no iunusuial pilot effort. Lilt offset or the degree- of ad-

. vanclng blade lift enp lov..ed t!irough tire speed range, vain be coci rol red either by
differential control inputs to t he rotors or. by var ring thm phasin g w cycl ic

beyond the scope of the flying to date.

The feasibrilty of the ABC has been demonstrated. !t remains fori the limits of
the system's capability: to be defined: for. the systerit to be optimrized In, teims'
of ha-ndling qualities. vibrationrs perfolrmance' anid loads: and:J1 ,-, i oe weight-
eft iceint stiructural concepts to be developed for the rotor, Pr OPUSi oil and
coirtrol systems.

Unclassified



PREFACE

This report describes the results of a flight test program
conducted with the Advancing Blade Concept (ABC) aircraft,
serial number 21942. Tests were conducted in both the pure
helicopter and the auxiliary propulsion configuration.
Flights were performed by the Sikorsky Aircraft Division of
United Technologies Corporation under Contracts DAAJ02-72-C-
0020 and DAAJ02-75-C-0009, with the Applied Technology Labora-
tory, U.S. Army Research and Technology Laboratories, Fort
Eustis, Virginia. Testing was conducted at the contractor's
flight test facilities in Stratford, Connecticut, and West
Palm Beach, Florida, and at Rentschler Field, East Hartford,
Connecticut. Program Managers for the contractor were
Messrs. G. Stack, D. Jenney, D. Halley, and A. Linden.

Flight testing in the pure helicopter configuration commenced
on 21 July 1975 and was completed on 9 Marcn 1977. The air-
craft was modified with turbojets for auxiliary propulsion,
and flight testing in that configuration began on 6 April 1978
and continued through 31 May 1980. It was conducted under the
supervision of Messrs. W. Groth, A. Ruddell and R. McCutcheon.
The Sikorsky test pilots were Messrs. B. Graham, D. Wright,
J. Wright, C. Evans, and R. Holasek. Government evaluation
pilots were Messrs. D. Simon, Applied Technology Laboratory,
R. Gerdes, NASA Ames Research Center, and Maj. M. Blair and
Lt. Cmdr. T. MacDonald, Naval Air Test Center. Messrs.
H. Young, H. Murray, D. Simon, J. Whitman, D. Arents, and
J. Macrino were the Army Technical Representatives.

Funding for contract DAAJ02-72-C-0020 was provided by the U.S.
Army. Funding for contract DAAJ02-75-C-0009 was provided by
the U.S. Army, the U.S. Navy, and the National Aeronautics and
Space Administration (NASA). The U.S. Air Force supplied J-60
engines for auxiliary propulsion flight testing.
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INTRODUCTION

The Advancing Blade Concept (ABC)TM rotor system, with a pair
of counterrotating, coaxial, very rigid hingeless rotors,
represents a significant departure from all predecessor heli-
copter rotor systems. It der-ives its name from the fact that
the predominant lift load at high forward speeds is carried by
the advancing blades on both sides of the aircraft. Since the
retreating blades are not required to carry a significant
fraction of the total lift load at forward speed, the speed
and load factor limitations of the conventional helicopter due
to retreating zlade stall are eliminated. Unlike a conven-
tional helicopter, rotor lift capability is retained with
increasing speed, and speed capability is maintained at alti-
tude.

In addition to performance benefits, the ABC's unique coaxial
rigid rotors represent a significant departure from past
practice in handling qualities, acoustics, loads and dynamics.
As with other coaxial counterrotating rotors, torque cancella-
tion is provided, thereby eliminating the need for a tall
rotor and its associated shafting and gearboxes.

Advancing Blade Concept development began in 1964. Extensive
analytical and experimental studies culminated in the test of
a 40-foot-diameter rctor in the Ames 40-x-80-foot wind tunnel
in 1970 (Reference 1). The wind tunnel tests covered a speed
range of 80 to 180 knots and advance ratios of 0.21 to 0.91.
Test results confirmed the performance potential of the ABC
rotor system. In addition, the full-scale wind tunnel program
developed materials technology and fabrication techniques to
make construction of a demonstrator aircraft practical.

In December 1971 the U.S. Army awarded Sikorsky Aircraft
Contract DAAJ02-72-C-0020 to design, fabricate, and fly the
XH-59A to demonstrate the performance, handling qualities, and
maneuver capabilities of the ABC rotor system. In August 1973
the first demonstrator aircraft, SiN 21941, was badly damaged
in a hard landing during low speed forward flight test. A
thorough accident investigation established that the incident
was not inherent to any basic flaw in the concept. In
November 1974 contract DAAJ02-75-C-0009 was awarded to con-
tinue the flight test program with aircraft SiN 21942. This
report documents the results of that contract.

1. FULL-SCALE WIND TUNNEL INVESTIGATION OF THE ADVANCING
BLADE CONCEPT ROTOR SYSTEM, USAAVLABS Technical Report
71-25, Euscis Directorate, U.S. Army Air Mobility R&D
Lab, Fort Eustis, Va, August 1971, AD 734338.
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Sixty-six hours of helicopter mode flying have been completed
with the test envelope expanded to 156 KTAS in level flight
and 186 KTAS in a dive. Altitudes of 14,000 feet were inves-
tigated.

Auxiliary propulsion flying was done in two phases. The
first phase involved testing with the two rotors mounted on
the aircraft to cross each other at the 90-degree azimuth
position. This testing included 24 hours and expanded the
envelope to 204 KTAS. The second phase of flight testing had
the rotors installed to cross each other at 0 degree azimuth
position. This included 16 hours of flight tests and ex-
panded the envelope to 238 KTAS.

4.i
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DESIGN DESCRIPTION

The XH-59A Advancing Blade Concept demonstrator aircraft is
designed as a research aircraft to investigate the rotor
characteristics kn both helicopter and auxiliary propulsion
modes. Figure 1 shows the aircraft in the helicopter mode,
and the auxiliary propulsion configuration is shown in
Figure 2. Table 1 summarizes the general aircraft attri-
butes. Detailed design descriptions are presented in the
following sections.

TABLE 1. XH-59A AIRCRAFT ATTRIBUTES.

Aircraft Length (rotor turning) ....... 41 ft 8 in.
DFselage Length ....................... 40 ft 10 in.
Main Landing Gear Tread ............... 8 ft
Height ................................ 12 ft
Rotor Diameter ........................ 36 ft
Number of Rotors ...................... 2
Blades per Rotor ...................... 3
Rotor Separation ...................... 30 in.
Blade Taper Ratio ..................... 2:1
Blade Twist (nonlinear) .............. -10 deg

Total Rotor Solidity (bc 7 5 ) ............ 127
rR

Precone Angle ......................... 3 deg
Prelag Angle .......................... 1.4 deg
Shaft Tilt ............................ 0 deg
Design Rotor Speed (helicopter ........ 650 ft/sec

aux propulsion)... 450 ft/sec
Drive System Design Power ............. 1500 hp2
Tail Surface - Horizontal ............. 60 ft2

- Vertical ............... 30 ft
Elevator - % of Horizontal Tail ....... 25
Rudder - % of Vertical Tail ........... 30
Power Plants - Lift ................... (2) PT6-3

- Thrust ................. (2) J60-P3A
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Figure 1. ABC Pure Helicopter.i-5

Figare 2. ABC Auxiliary Propulsion Helicopter.
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ROTOR SYSTEM

The ABC rotor system consists of two three-bladed counter-
rotating rotors classified as rigid or more precisely, stiff
inpiane hingeless. The latter name refers to that category of
rotors which have no mechanical hinges in the two bending
degrees of freedom and which have a first chordwise bending
natural frequency higher than one times the rotor speed. The
flapwise bending stiffness distribution is based on the
following design requirements:

(a) The advancing blade concept involves allowing
a large part of the rotor lift to be generated
in the advancing portion of the rotor disc in
high speed flight using conventional one-per-
rev cycle pitch. This requires a relatively
high flapwise frequency (or effective hinge
offset) in the first flapwise bending mode.

(b) The distance between the upper and lower
rotors is minimized to reduce drag. This
requires sufficient stiffness to prevent the
blade tips from contacting in flight.

(c) The stiffness distribution must result in
sufficient bending fatigue strength in the
selected materials under the high vibratory
moments generated by the rigid rotor.

To meet the stiffness requirements at a minimum weight, the
rotor blades are tapered in airfoil thickness, the highest
taper occurring inboard. In addition, the airfoil chord
length is tapered linearly from tip to root to maximize the
performance of the rotor. Figure 3 shows spanwise distribu-
tions of the airfoil chord length and thickness ratio. The
rotor blades have an effective built-in twist of approximately
10 degrees which varies nonlinearly from tip to root as shown
in Figure 4.

The rotor radius is 216 inches and normal operating rotor
speed is 345 rpm, yielding a tip speed of 650 feet per second.

The primary structural member of the rotor blade is the spar
which provides most of the blade's flapwise stiffness require-
ments. The spar is constructed of 6-4 titanium alloy to
maximize the fatigue stress allowable for a given weight in a
metal structure. The hollow member, highly tapered in both
wall thickness and periphery, is fabricated from a thick-
walled extrusion which is machined both internally and
externally and then hot formed to the required elliptical
shape. The inboard end is round and threaded for attachment
to the pitch bearing assembly.
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